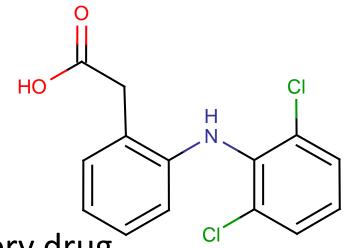

Interesting molecule of the day



Interesting molecule of the day

Diclofenac

• pK_a : 4.15 K_{ow} : $10^{4.51}$ C_w^{sat} : 2.4 mg L^{-1} K_H : $4.8x10^{-9}$ bar L mol⁻¹

2-((2,6-dichlorophenyl)amino)benzeneacetic acid

- non-steroidal anti-imflammatory drug
 - arthritis, acute injury
 - 30 years of human use
- contaminant in India
 - used on cattle
 - vultures eat dead cattle; kidney failure
 - use was phased out

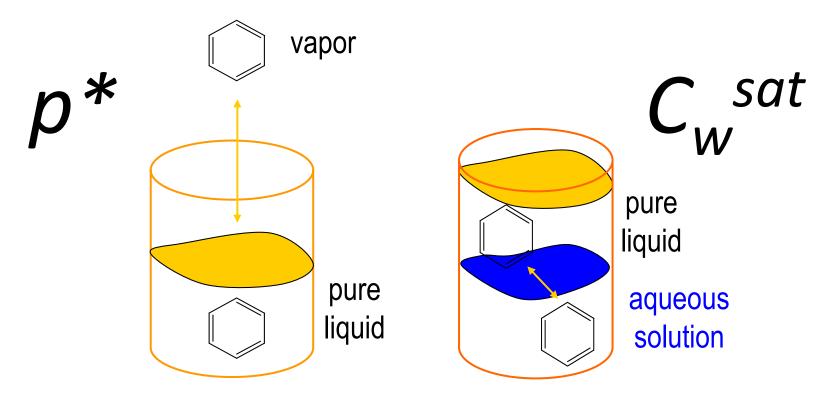
Interesting molecule of the day

Gyps Species	NSAID	Phase	Dose (mg kg ⁻¹)	Route	N Dosed	N Died	% Mortality	N Control	Status and Source of Birds
G. bengalensis	Diclofenac	_	0.007 to 0.940	Fed treated tissue	20	13	65	_	Captive birds (Pakistan) ^a
G. bengalensis	Diclofenac	_	0.25 and 2.5	Gavage	4	3	75	2	Captive birds (Pakistan) ^a
G. africanus	Diclofenac	_	0.8	Gavage	2	2	100	2	Captive birds (South Africa) ^b
G. africanus	Meloxicam	T	0.5	Gavage	5	0	0	3	Captive birds (South Africa)
G. africanus	Meloxicam	II	1.0	Gavage	5	0	0	3	Captive birds (South Africa)
G. africanus	Meloxicam	III	2.0	Gavage	5	0	0	3	Captive birds (South Africa)
G. africanus	Meloxicam	IV.1	2.0	Gavage	14 ^c	0	0	_	Captive birds (South Africa)
G. africanus	Meloxicam	IV.2	2.0	Gavage	21	0	0	4	Wild-caught birds (Namibia)
G. africanus	Meloxicam	V	0.03 to 1.98	Fed treated tissue	6 ^d	0	0	_	Captive birds (South Africa)
G. africanus	Meloxicam	٧	1.18 to 2.45	Gavage	6 ^d	0	0	_	Captive birds (South Africa)
G. bengalensis	Meloxicam	VI	0.5	Gavage	3	0	0	1	Captive birds (India)
G. bengalensis	Meloxicam	VI	2.0	Gavage	3	0	0	1	Captive birds (India)
G. indicus	Meloxicam	VI	0.5	Gavage	2	0	0	2	Captive birds (India)
G. indicus	Meloxicam	VI	2.0	Gavage	2	0	0	1	Captive birds (India)

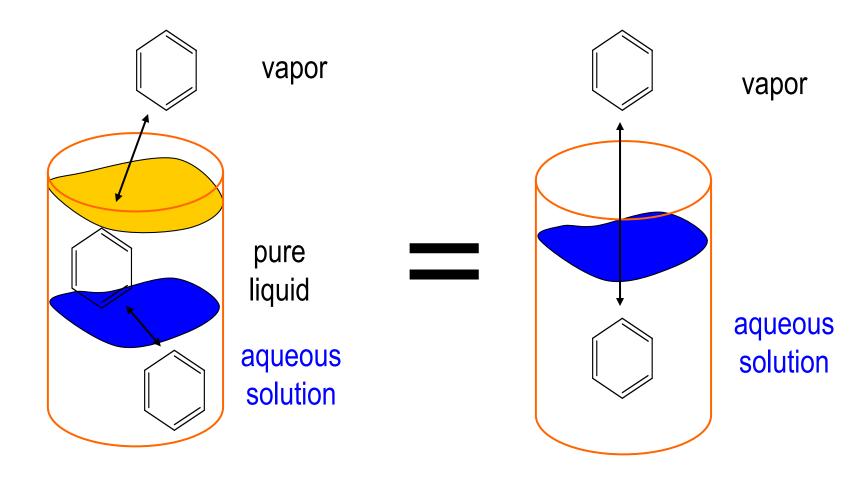
There was no mortality in any of the control birds.

Swan et al., 2006, PLoS Biol. 4(3):e66

Vultures in India


^aExperimental results from reference [1].

^bExperimental results from reference [7].


Experimental and control birds from phases I to III (including three control birds not previously dosed with meloxicam).

dFive of the six birds were experimental birds from Phase III and IV.1. The same birds were used for feeding tissue and oral gavage, with a 2-wk washout period between treatments (see Materials and Methods). DOI: 10.1371/journal.pbio.0040066.t001

- Phase transfers
 - vaporization/sublimation
 - aqueous solution

- Another phase exchange
 - air-water exchange

$$e^p = e^{kc}$$

Phase exchange

$$A_{water} \leftrightarrow A_{air}$$

$$p = kc$$

Henry's Law constants

$$K_H = \frac{p_A}{[A_{water}]} \qquad \text{(bar L mol-1)}$$

$$K_{aw} = \frac{[A_{air}]}{[A_{water}]} \qquad \begin{array}{l} \text{dimensionless} \\ \text{(mol } L_a^{-1} \text{ mol}^{-1} L_w) \end{array}$$

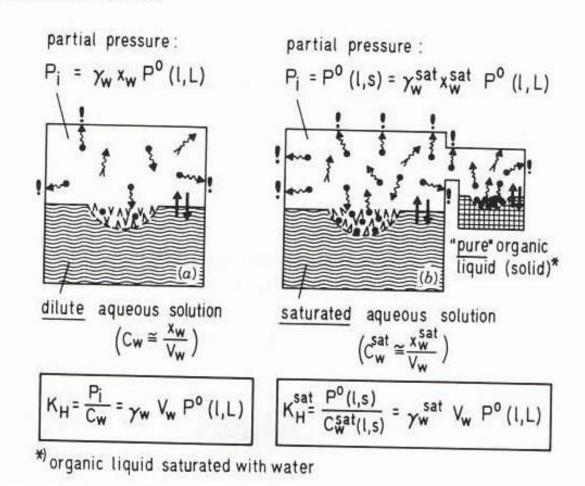
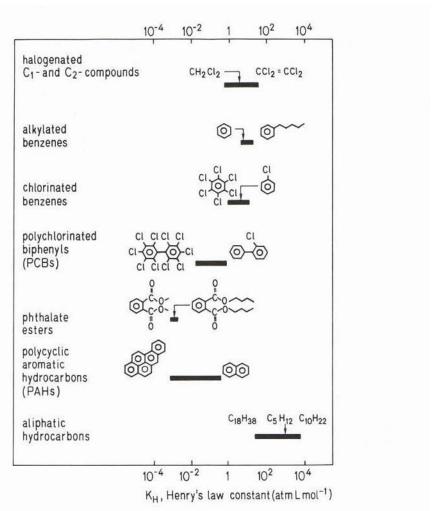



Figure 6.1 Equilibrium partitioning of a compound between a gas phase (air) and water. (a) System at dilute concentrations. (b) System at saturated concentrations.

compound	Henry's Law constant K _{aw} (dimensionless)		
benzene	10 ^{-0.65}		
phenol	10 ^{-4.59}		
trichloroethene	10-0.31		
phenanthrene	10 ^{-2.85}		
2,2',5,5'-tetrachlorobiphenyl	10 ^{-1.70}		

Figure 6.2 Ranges in Henry's Law constants ($K_{\rm H}$) for some important classes of organic compounds.

High
$${m P}^0$$

High
$$C_w^{\it sat}$$

$$K_H = \frac{Pi}{Cw}$$

$$K_{H}^{sat} = \frac{P^{0}}{C_{w}^{sat}}$$

 Rank the following three compounds by Henry's Law constant from highest to lowest:

ÇI	compound	vapor pressure (bar)	solubility (M)
CI	1,2,3,5-tetrachlorobenzene	10-4.00	10 ^{-4.79}
CI	tetrachloroethene	10-1.60	10-3.07
	naphthalene	10 ^{-3.95}	10-3.60

A. 1,2,3,5-tetrachlorobenzene > tetrachloroethene > naphthalene B. tetrachloroethene > 1,2,3,5-tetrachlorobenzene > naphthalene C. naphthalene > tetrachloroethene > 1,2,3,5-tetrachlorobenzene

b) K_H: 10^{1.47}

 $10^{0.79}$

10^{-0.35} bar L mol⁻¹

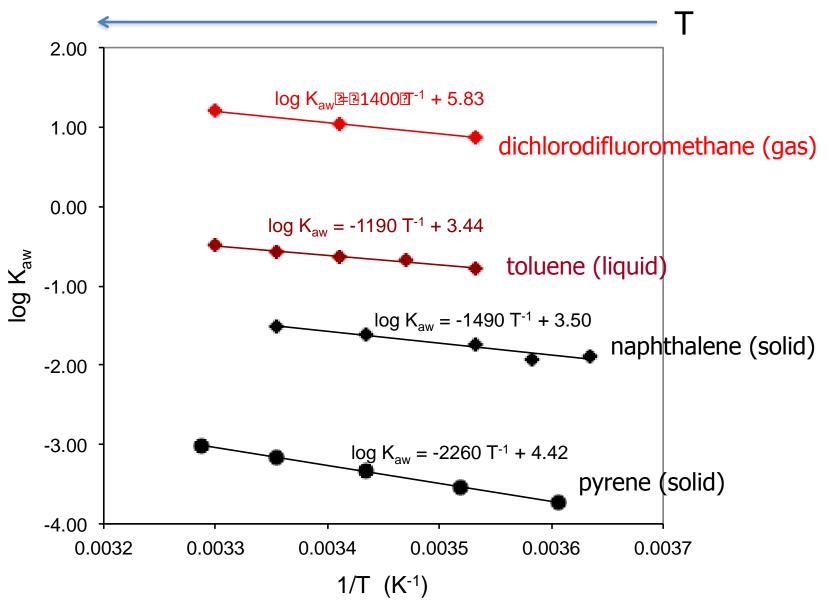
- Temperature dependence
 - enthalpy of liquid-air phase change, $\Delta_{al}H$

$$\ln K_H = -\frac{\Delta_{al}H}{R}\frac{1}{T} + c$$

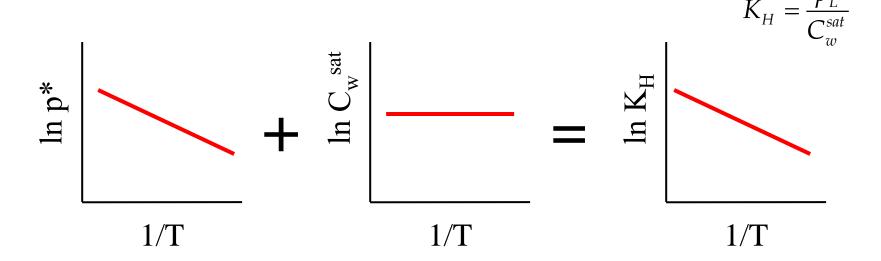
- Two components of $\Delta_{al}H = \Delta_{vap}H \Delta_{w}H^{E}$
 - enthalpy to vaporize, $\Delta_{vap}H$, related to p_L^*
 - · has to be paid
 - (excess) enthalpy to solubilize, $\Delta_w H^E$, related to C_w^{sat}
 - get this back
 - for solids and gases, melting and condensation enthalpies cancel out

• Liquid:
$$D_{al}H_{i} = D_{vap}H_{i} - D_{w}H^{E}$$
(getting to gas phase) (getting out of water phase)

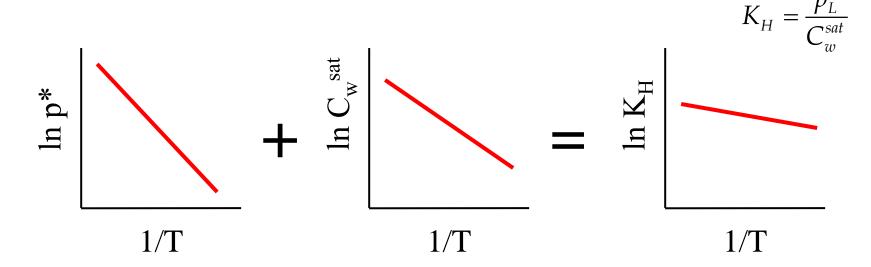
• Solid:
$$D_{al}H_{i} = D_{sub}H_{i} - D_{w}H^{E}$$

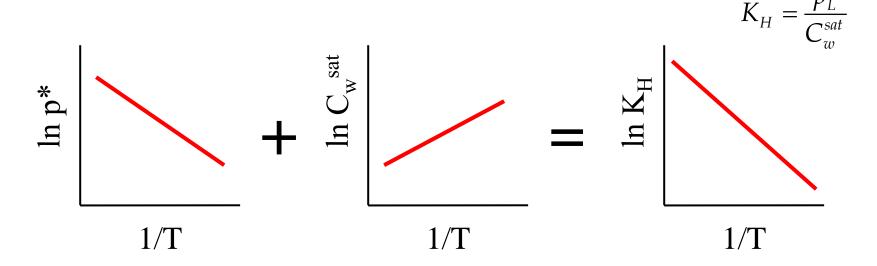

$$= \left(D_{fus}H_{i} + D_{vap}H\right) - \left(D_{fus}H_{i} + D_{w}H^{E}\right)$$

$$= D_{vap}H_{i} - D_{w}H^{E}$$


• Gas:
$$D_{al}H_i = (0) - D_wH$$
 gas already in gas phase
$$= (0) - (-D_{vap}H_i + D_wH^E)$$
$$= D_{vap}H_i - D_wH^E$$

 How does temperature affect the Henry's Law constant?


- A. an increase in T causes an increase in K_H
- B. an increase in T causes a decrease in K_H
- C. depends on whether we are talking about a solid, liquid, or gas

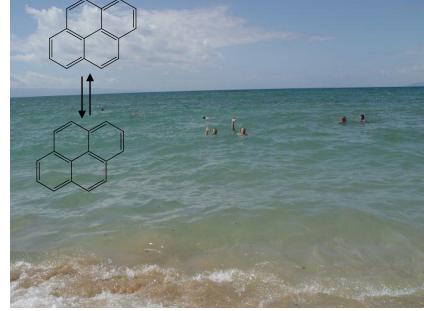

- Temperature dependence
 - liquids
 (e.g., benzene, tetrachloroethylene)

- Temperature dependence
 - solids
 (e.g., naphthalene, 1,4-dichlorobenzene)

- Temperature dependence
 - gases
 (e.g., vinyl chloride, chloromethane)

 How does salinity affect the Henry's Law constant?

- A. an increase in salinity causes an increase in K_H
- B. an increase in salinity causes a decrease in K_H
- C. depends on whether we are talking about the Atlantic, Pacific, or Indian Ocean


- Effect of salt
 - Salting out decreases solubility; increases K_{aw}

$$K_{aw,salt} = \frac{C_a}{C_{w,salt}}$$

$$K_{aw,salt} = \frac{C_a}{C_w^{sat}} \frac{C_w^{sat}}{C_{w,salt}^{sat}} = K_{aw} \frac{C_w^{sat}}{C_{w,salt}^{sat}}$$

$$K_{aw,salt} = K_{aw} \times 10^{K^S [salt]_{tot}}$$

- Effect of salt
 - pyrene, $K_{aw} = 10^{-3.32}$
 - seawater
 - $[salt]_{tot} = 0.5 M$
 - $K^S = 0.30$

$$K_{aw,salt} = (10^{-3.32})10^{K^{S}[salt]_{tot}}$$

$$K_{aw,salt} = (10^{-3.32})10^{(0.30)(0.5)} = (10^{-3.32})(1.4)$$

$$K_{aw,salt} = 10^{-3.17}$$

 How does a co-solvent affect the Henry's Law constant?

- A. an increase in co-solvent concentration causes an increase in K_H
- B. an increase in co-solvent concentration causes a decrease in K_H
- C. depends on the co-solvent
- D. depends on the contaminant compound

- Effect of co-solvents
 - Co-solvents increase solubility; decrease K_H

$$K_{aw,mix} = \frac{C_a}{C_{w,mix}}$$

$$K_{aw,mix} = \frac{C_a}{C_w^{sat}} \frac{C_w^{sat}}{C_{w,mix}^{sat}} = K_{aw} \frac{C_w^{sat}}{C_{w,mix}^{sat}}$$


$$K_{aw,mix} = K_{aw} \frac{\gamma_{w,mix}^{sat}}{\gamma_w^{sat}} = K_{aw} \times 10^{-\sigma^c f_v}$$

- Effect of co-solvents
 - naphthalene, $K_{aw} = 10^{-1.74}$
 - 20% acetone solution
 - $f_v = 0.2$
 - $\sigma^{c} = 6.5$

$$K_{aw,mix} = 10^{-\sigma^c f_v} K_{aw} = 10^{-(6.5)(0.2)} (10^{-1.74})$$

$$K_{aw,mix} = 10^{-3.04}$$

- Partition between air and water
 - importance of keeping bubbles out of water samples for VOCs
 - 40 mL vial
 - 39 mL water, 1 mL bubble
 - VOC is chloromethane
 $K_{aw} = 10^{0.16}$
 - what fraction of the chloromethane is in the bubble?

Partition between air and water

$$f_a = \frac{\text{moles in air}}{\text{moles in air} + \text{moles in water}} = \frac{C_a V_a}{C_a V_a + C_w V_w}$$

$$f_a = \frac{V_a}{V_a + \frac{V_w}{K_{aw}}}$$

$$f_a = \frac{1}{1 + \frac{39}{10^{0.16}}} = \frac{1}{28.0} = 0.036 = 3.6\%$$
 in the air